
PAL Session Stewart 2.1 & 2.2             Spring 2010 
 

Tangent  
2.1 Key Terms/Concepts: 

Secant Line 
Average Rate of Change 
Instantaneous Velocity 

Average Rate of Change/Average Velocity 
2.1 Formulas 
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The point 

Section 2.1 p. 87 #3 (modified) 

)
2

(1, 1P =  lies on the curve / (1 )y x x= +  

(a)  If Q is the point ( , / (1 ))x x x+ , find the slope of the secant line PQ when x is: 
 (i) 0.9 
 
 
 (ii) 0.99 
 
 
 (iii) 1.1 
 
 
 (iv) 1.001 
 
 
(b) From (a), guess the value of the slope of the tangent line. 
 
(c) From (b), find the equation of the tangent line at the point P. 
 
 
 
 

A rock is thrown upward on the planet Mars with a velocity of 10 m/s and its height (position) at t 
seconds later is described by 

Section 2.1 p. 87 #6 (modified) 

210 1.86y t t= − . 
(a) Find the average velocity over the given time intervals: 
 (i) [1,1.5]  
 
 
 (ii) [1,1.1] 
 
 
 (iii) [1,1.01] 
 
 
 (iv) [1,1.001] 
 
 
(b) Estimate the instantaneous velocity when t=1.
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Limit of a Function at a Point 
2.2 Key Terms/Concepts: 

Left-Hand (LH) Limits 
Right-Hand (RH) Limits 
Limit exists if and only if RH & LH limits are  

equal in value 
Vertical Asymptote at point a 
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=
2.2 Formulas –what does each mean? 
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Use the graph of f in the book to state the value of each if it exists.  If it does not, explain why: 
Section 2.2 p. 97 #5 
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Sketch the graph of what the function f may look like under the given conditions: 
Section 2.2 p. 98 #14 
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Determine the infinite limit.  Hint:  There are two ways of doing this:  try a table and do the limiting 
process as in Section 2.1 OR you can try graphing it 

Section 2.2 p. 98 #26 
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Limit Laws 
2.3 Key Terms/Concepts: 

Direct Substitution Law 
Squeeze Theorem 
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→ → →

± = ±
2.3 Formulas—what does each mean? 
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Evaluate the limit if it exists. 
Section 2.3 p.107 #12  
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Evaluate the limit if it exists. 
Section 2.3 p. 107 #20 
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If 
Section 2.3 p. 107 #36 
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2.5 Key Terms/Concepts: 

1. Continuous  

Give a pictorial 
example of each term 

2. Discontinuous 
3. Removable discontinuity 
4. Infinite discontinuity 
5. Jump discontinuity 
6. Continuous from right/left at a 
7. Continuous on an interval 
8. Intermediate Value Theorem

 

Sketch the graph of a function that has a jump discontinuity at 
Section 2.5 p. 128 #6 (modified) 

2x = , and a removable discontinuity at 
4x = , and an infinite discontinuity at 1x = − . 

 
 
 
 
 
 
 
 
 
 

Find the numbers at which f is discontinuous.  At which of these numbers is f continuous from the right, 
from the left, or neither. Sketch the graph of f.   

Section 2.5 p. 129 #39 

2 if 0
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2  if 1
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Suppose f is continuous on [1,5] and the only solutions of the equation 
Section 2.5 p. 129 #46 

( ) 6f x = are 1 and 4x x= = .  If  
(2) 8f = , explain why (3) 6.f >  
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Horizontal Asymptote 
2.6 Key Terms/Concepts: 

 
lim ( )
x

f x L
→±∞

=
2.6 Formulas –what does each mean? 
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Find the limit. 
Section 2.6 p. 141 #20 
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Find the limit. 
Section 2.6 p. 141 #32 
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Find the limit. 
Section 2.6  
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Find the limit. 
Section 2.6  
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Tangent line slope 
2.7 Key Terms/Concepts: 

Difference Quotient 
Instantaneous velocity 
Derivative of a function at a 

( ) ( )f x h f x
h

+ −
2.7 Formulas –What does each mean? 
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Find the equation of a tangent line to the curve at the given point. 
Section 2.7 p. 150 #7 modified 

  at (4, 2)y x=  
 
 
 
 
 
 
 

Find f’(x). 
Section 2.7 p 151 #28 
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The following limits represent the derivative of some function f at some number a.  State such f and a. 
Section 2.7 p. 151 #32, 33 
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Differentiable at a 
2.8 Key Terms/Concepts: 

Differentiable on an interval 
Differentiation operators 
Implications differentiation on continuity 
Not Differentiable (3 cases) 
Higher Derivatives(acceleration, jerk) 
 

d
dx

2.8 Formulas –what does each mean? 

 

2 3 ( )

2 3 ( ), ,
n

n

d s d da
dt dx dx

=  

 

Sketch the graph of the derivative of the following function: 
Section 2.8 p. 162 #4-11 (modified) 

 
 

Find the derivative of the function using the definition of derivative.  State the domain of the function 
and the domain of its derivative: 

Section 2.8 p. 163 #23 

3( 5) 3f x xx −= +  
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